Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon

llअंतरी पेटवू ज्ञानज्योत||

SYLLABUS

for

Master of Science (M. Sc.) II [Mathematics]

Choice Based Credit System (Outcome Based Curriculum)

Summary of Distribution of Credits under CBCS Scheme for

M.Sc. (Mathematics)

Sr. No	Type of course	Sem I	Sem II	Sem III	Sem IV
01	Core	16	16	16	12
02	Skill based	04	04	-	-
03	Elective	-	-	04	08
04	Project	-	-	-	-
05	Audit	02	02	02	02
06	Total Credits	22	22	22	22

Subject Type	Core	Skill based	School Elective	Project	Audit	Total
Credits	60	08	12	00	08	88

Total Credits = 88

Kavayitri Bahinabai Chaudhari North Maharashtra University Jalgaon M. Sc. (Mathematics)

Choice Based Credit System (Outcome Based Curriculum) with effect from 2021 -2022 Course credit scheme

Semester	(A) Core Courses			(B) Skill Based / Elective Course			(C) (No wei	Total Credits		
Semester	No. of Credits Total Courses (T+P) Credits			No. of Courses	Credits (T+P)	Total Credits	No. of Courses	Credits (Practical)	Total Credits	(A+B+C)
I	4	16	16	1	4+0	4	1	2	2	22
II	4	16	16	1	4+0	4	1	2	2	22
III	4	16	16	1	4 + 0	4	1	1 2 2		
IV	4	12	12	2	8 + 0	8	1 2 2			22
Total Credits		60			20		8			88

(T, Theory; P, Practical)

Structure of Curriculum

			First	Year			Second	d Year		Total
		Seme	ester I	Seme	ester II	Semes	ter III	Semes	ster IV	Credit
		Credit	Course	Credit	Course	Credit	Course	Credit	Course	Value
			Pr	erequisit	e and Core	e Courses				
(A)	Theory	4	4	4	4	4	4	4	3	60
	Practical	0	0	0	0	0	0	0	0	00
(B)	Skill Based / Subject Elec	tive Cour	ses							
1	Theory /Practical	4	1	4	1	4	1	4	2	20
(C)	Audit Course (No weightage in CGPA calculations)									
1	Practicing Cleanliness	2	1							2
2	Personality and Cultural Development Related Course			2	1					2
3	Technology Related + Value Added Course					2	1			
4	Professional and Social + Value Added Course							2	1	2
	Total Credit/ Courses	22	6	22	6	22	6	22	6	88

	ester I		(Choose One) and Cultural		chnology +) Semester IV(Choose O Professional and Socia			
(Compulsory)		Devel	lopment	Value	Added Course	Valu	ie Added Course		
Course Course Title		Course Code	Course Title	Course Code	Course Title	Course Code	Course Title		
		AC-201A	Soft Skills	AC-301A	Computer Skills	AC-401A	Human Rights		
	Practicing Cleanliness	_	_	AC-201B	Sport Activities	AC-301B	Cyber Security	AC-401B	Current Affairs
AC-101				_	AC-201C	Yoga	AC-301C	Project work on typesetting in Latex	AC-401C
		AC-201D	Music	AC-301D	Project work on Recent topics in Mathematics	AC-401D	Vedic Mathematics		

Semester-wise Course Structure of M.Sc. Mathematics

Semester I

			Teaching	g Hours	/Week	Ma	arks (To	otal 1	00)	
Course	Course Type	Course Title	Т	P	Total	Int	ernal	Exte	ernal	Credits
			1	1	Total	Т	P	T	P	
MT-101	Core	Advanced Real Analysis	4		4	40		60		4
MT -102	Core	Topology	4		4	40		60		4
MT -103	Core	Abstract Algebra	4		4	40		60		4
MT -104	Core	Partial Differential Equations	4		4	40		60		4
MT -105	Skill Based	Programming in C++	4		4	40		60		4
AC -101	Audit	Practicing Cleanliness		2	2		100			2
	Course						130			_
Total Cre	Total Credit for Semester I: 22 (T = Theory: 16; P = Practical:00; Skill Based:04; Audit Course:02)									

Semester II

			Teaching	g Hours	/ Week	Ma	arks (To	otal 1	00)	G III
Course	Course Type	Course Title	Т	P	Total	Int	ernal	Exte	ernal	Credits
			1	1		T	P	Т	P	
MT -201	Core	Number Theory	4		4	40		60		4
MT -202	Core	Complex Analysis	4		4	40		60		4
MT -203	Core	Linear Algebra	4		4	40		60		4
MT -204	Core	Classical Mechanics	4		4	40		60		4
MT -205	Skill Based	Python Programming	4		4	40		60		4
AC-201	Audit Course	Choose one out of Four (AC-201A/ AC-201B/AC-201C/AC-201D) from		2	2		100			2
A/B/C/D		Personality and Cultural Development								
Total Cree	Total Credit for Semester II: 22 (T = Theory Course: 16; P = Practical:00; Skill Based course:04; Audit course:02)									

Page **3** of **57**

Semester III

Course	Course Type Course Title		Teac	Teaching Ho Week		Marks (Total 100)				Credits
	71		Т	P	Total	Inte	ernal	Exte	rnal	
				1		Т	P	T	P	
MT-301	Core	Topics in Functional Analysis	4		4	40		60		4
MT -302	Core	Numerical Analysis	4		4	40		60		4
MT -303	Core	Topics in Field Theory	4		4	40		60		4
MT -304	Core	Fluid Dynamics	4		4	40		60		4
MT -305	Elective	Statistical Techniques	4		4	40		60		4
MT -306	(Select any one)	Lattice Theory	ļ '		'	10		00		,
AC-301		Choose one out of Four (AC-301A/								
A/B/C/D	Audit Course	AC-301B/AC-301C/AC-301D) from		2	2		100			2
A/B/C/D		Technology + Value Added Courses								
Total Credi	Total Credit for Semester III: 22 (T = Theory Course: 16; P = Practical:00; Elective Course:4; Audit Course:02)									

Semester IV

Course	Course Type	Course Type Course Title		Teaching Hours Week		Ma	arks (To	0)	Credits	
			Т	Р	Total	Internal		External		
				1	Total	T	P	T	P	
MT-401	Core	Linear Integral Equations	4		4	40		60		4
MT -402	Core	Operations Research	4		4	40		60		4
MT -403	Core	Commutative Algebra	4		4	40		60		4
MT -404		Advanced Abstract Algebra								
MT -405	Elective	Algebraic Topology	8		8	40		60		8
MT -406	(Select any two)	Theory of Special Functions	. 0		0	40		00		0
MT -407		Cryptography								
AC-401 A/B/C/D	Audit Course	Choose one out of Four (AC-401A/ AC-401B/ AC-401C/ AC-401D) from Professional and Social + Value Added Courses		2	2	-1	100	1		2
Total Credit for Semester IV: 22 (T = Theory Course: 12; P = Practical:00; Elective Course:08; Audit Course:02)										

Program at a Glance

Name of the program (Degree) : M. Sc. (Name of the Subject)

Faculty : Science and Technology

Duration of the Program : Two years (four semesters)

Medium of Instruction and Examination : English

Exam Pattern : 60:40 (60 marks University exam

and 40 marks continuous internal

assessment)

Passing standards : 40% in each exam separately

(separate head of passing)

Evaluation mode : CGPA

Total Credits of the program : 88 (60 core credits, 08 Skill enhancement

credits, 12 Elective credits and 08 audit

credits)

Program Objectives for M.Sc. Mathematics Program:

- To prepare skilled manpower with scientific knowledge of Mathematics for solving real life and industrial based problems
- To inculcate critical thinking to carry out scientific investigations in Mathematics.
- To equip the student with mathematical, software based and social thinking based skills to analyze problems, formulate hypothesis, evaluate or validate results, and draw reasonable conclusions thereof.
- Prepare students to purse research or careers in mathematical sciences and allied fields
- Imbibe effective scientific and technical communication in both oral and writing.

Program Outcomes (PO) for M.Sc. Mathematics Program:

Upon successful completion of the M.Sc. program, student will be able to:

PO No.	PO	Cognitive level
PO1	Understand the fundamental axioms in mathematics and equipped with the capabilities of developing ideas based on them	2
PO2	Develop themselves as a professionals in mathematics	6
PO3	Carry our scientific research in mathematics and related fields.	5
PO4	Apply mathematical methods/tools/skills in other scientific, engineering and industrial domains	3
PO5	Nurture problem solving skills, social thinking, creativity through skill and audit based courses.	4
PO6	Prepare themselves for competitive examinations	3

Program Specific Objectives for M.Sc. Mathematics program:

- To provide quality education through effective teaching learning processes by introducing Choice based credit systems and latest software skills.
- Enable students to enhance mathematical skills and understand the fundamental concepts of pure and applied mathematics.
- To provide an opportunity through up to date curriculum to develop scientific temper among the students results into skilled manpower.
- To inculcate innovative skills, team work, ethical practices among students so as to meet societal expectations through audit courses.
- To inculcate the inquisitiveness for mathematics and motivate the students for research in mathematics. .

Program Specific Outcomes (PSOs) for M.Sc. Mathematics program:

Students who graduate with a Master of Science in **Mathematics** will:

PSO No.	PSO	Cognitive level
PSO1	Understand the technicalities of mathematics and software's to explore the acquire knowledge for further developments.	2
PSO2	Employ confidently the techniques of mathematics for solving problems and scientific investigations.	4
PSO3	Apply the knowledge of mathematical concepts in interdisciplinary fields.	3
PSO4	Continue to acquire mathematical knowledge and skills appropriate for their professional activities and demonstrate highest standard and ethics.	6
PSO5	Pursue research in advanced areas of pure and applied mathematics.	5
PSO6	Qualify national level tests like NET/SET/GATE etc.	4

Distribution of Course papers for M.Sc. Part II (Mathematics)

Subject Code	Title of the Paper		Duration (Hrs./Wk)	Max. Mark	Exam. Time (Hrs.)
	M.Sc. Part II (Mat				
	Semester III: The		1	1	
MT-301	Topics in Functional Analysis	Core course	04	100	03
MT-302	Numerical Analysis	Core course	04	100	03
MT-303	Topics in Field Theory	Core course	04	100	03
MT-304	Fluid Dynamics	Core course	04	100	03
MT -305 MT -306	Statistical Techniques Lattice Theory	Elective Course (Any one)	04	100	03
AC- 301A/B/C/D	Choose one out of Four (AC-301A/AC-301B/AC-301C/AC-301D) from Technology + Value Added Courses	Audit course	02	100	
	Semester IV: The	ory Courses			
MT-401	Linear Integral Equations	Core course	04	100	03
MT-402	Operations Research	Core course	04	100	03
MT-403	Commutative Algebra	Core course	04	100	03
MT-404	Advanced Abstract Algebra	Elective	08	100	03
MT-405	Algebraic Topology	courses			(for each
MT-406	Theory of Special Functions	(Any two)			corse)
MT-407	Cryptography				
AC- 401A/B/C/D	Choose one out of Four (AC-401A/AC-401B/AC-401C/AC-401D) from Professional and Social + Value Added Courses	Audit course	02	100	

	MT-301: Topics in Functional Analysis	Lectures
	Course Objectives:	
	• To acquire concepts and results of normed linear space, inner product spaces and some linear operations	
	• The normed linear spaces which are complete metric space are especially very important for developing problem solving capabilities.	
Unit I	Normed linear spaces, Banach Spaces, Quotient spaces, Continuous linear Transformations. The Hahn-Banach theorem and its	12 L
	consequences, conjugate space and separability, Second conjugate space. The natural embedding of normed linear space and its second	
	conjugate space, Weak *Topology on conjugate space.	
Unit II	The open mapping theorem, Projection on Banach space, The closed	12 L
	graph theorem, the conjugate of an operations, The uniform	122
	boundedness theorem (Banach-Steinhauss theorem). Inner Product	
	spaces, Hilbert space: Definition, examples and simple properties,	
	Schwartz's inequality, Orthogonal complements, Projection theorem,	
	Orthogonal sets.	
Unit III	The Bessel's inequality, Fourier expansion and Parseval's equations,	12L
	Gram-Schmidt orthogonalization process, Separable Hilbert space, The	
	conjugate space, Riesz Theorem.	
Unit IV	Operations and their adjoint on a Hilbert space, self adjoint operators,	12 L
	Normal and unitary operators projections. Finite dimensional spectral	
	theory.	
Unit V	Determinants and spectrum of an operator, The spectral theorem, Fixed	12 L
	points, Definition and examples, Banach contraction mapping theorem,	
	Brouwer's fixed point theorem, Schauder's fixed point theorem.	

Suggested Readings:

- 1. Simmons G. F., (1963) **Introduction to Topology and Modern Analysis**, McGraw Hill Book Company New York 1963. (Chapter 9, Art 46 to 51. Chapter 10, Art 52 to 59, Chapter 11, Art 61 to 62, Appendix ONE)
- 2. Limaye B. V., (1996) **Functional Analysis**, second editions, New Age International (P), Ltd., Publishers. (chapter 6 Art 21 to 24, Appendix A)
- 3. B. Chaudhary and Sudarshan Nanda, **Functional Analysis with applications**, Wiley-Eastern.
- 4. Bachman G and Narici L, **Functional Analysis**, Academic Press.

Course Outcomes (COts):

CO No.	СО	Cognitive level
C301.1	Know how functional analysis uses and unifies idea from vector spaces	2
C301.2	apply fundamental theorem from theory of normed and Banach space	3
C301.3	Understand and apply from theory of Hilbert spaces to others areas	2

	MT - 302: Numerical Analysis	Lecture
	Course Objectives:	
	To know concept of Numerical Method to solve systems of solutions.	
	• To study interpolations, numerical and differential methods for solving	
	problems in allied fields of mathematics.	
	• To get the ability to solve differential equations with the techniques in	
	numerical methods.	
Unit 1	Solution of Algebraic and Transcendental Equations: Bisection Method,	12 L
	Iteration Method, Method of False Position, Newton-Raphson Method,	
	Ramanujan's Method, Muller's Method.	
Unit 2	Interpolation: Errors in Polynomial Interpolation, Finite Differences,	12 L
	Detection of Errors by use of Difference Tables, Differences of a Polynomial,	
	Newton's formulae for Interpolation, Central Difference, Interpolation with	
	unevenly spaced points, Divided differences.	
Unit 3	Numerical Differentiation and Integration: Numerical Differentiation,	12 L
	Maximum and Minimum values of a Tabulated Function, Numerical	
	Integration.	
Unit 4	Matrices and Linear systems of Equations: Basic Definitions, Solution of	12L
	Linear Systems - Direct Methods, Solution of Linear Systems - Iterative	
	Methods, Eigenvalue Problem.	
Unit 5	Numerical Solutions of Ordinary Differential Equations: Solution by Taylor's	12 L
	Series, Picard's Method of successive approximations, Euler's Method,	
	Runge - Kutta methods, Predictor Corrector methods.	

Suggested readings:

- 1. S. S. Sastry, (2004) **Introductory Methods of Numerical Analysis**, Prentice Hall of India Private Ltd. {Chapter 2, Art. 2.1-2.7, Chapter 3, Art. 3.1-3.7, 3.9, 3.11, Chapter 5, Art. 5.1 -5.4, {Chapter 6, Art.6.1-6.5, Chapter 7, Art. 7.1 7.6}.
- 2. M.K. Jain, S.R.K. Iyengar and R.K. Jain: Numerical **methods for Scientific and Engineering Computation**, New Age international Publishers.
- 3. V.N. Vedamurthy and N.Ch.S.N. Iyengar: **Numerical methods**, Vikash Publishing House.
- 4. C. Gerald and O. Wheatley: **Applied Numerical Analysis**, Addison Publishing company.
- 5. E. Balagurswamy: **Numerical Methods**, Tata McGraw-Hill.

Course Outcomes (COts):

CO	со	Cognitive
No.	CO	
C302.1	Acquire techniques of numerical methods	2
C302.2	Solve system of equations with the help of numerical techniques	3
C302.3	Find solutions of differential equations numerically	3

	MT - 303: Topics in Field Theory	Lecture
	Course Objectives:	
	 To give knowledge of extensions on fields. 	
	 To study Galois Theory, Perfect fields of finite fields. 	
	• To acquire knowledge about Roots of unity, solvability of	
	polynomials by radicals and constructability of geometrical figures	
Unit 1	Algebraic Extensions of Fields: Field Extension, Algebraic Extension,	12 L
	Minimal Polynomial, Finite Fields, Finite Extension	12 L
Unit 2	Splitting Field and Irreducible Polynomial: Algebraic closure,	
	algebraically closed fields, Simple Extension, Splitting field, Irreducible	12 L
	polynomials and Eisenstein criterion, multiple roots, F-isomorphism.	
Unit 3	Normal and Separable Extensions: Normal extension, Separable and	
	Inseparable extensions, Perfect fields of finite fields. Purely Inseparable	12 L
	Extension.	
Unit 4	Galois Extensions: Galois extensions, Galois Group, Fixed Field,	
	Fundamental theorem of Galois theory, Fundamental theorem of	12 L
	Algebra.	
Unit 5	Solvability by Radicals: Roots of unity, Cyclic Extension, Solvability by	
	radicals, Geometric construction, Transcendental extensions,	12 L
	Transcendental base.	

Suggested readings:

- 1. N.S. Gopalakrishnan, (2003) **University Algebra**, New Age International (P), Ltd., Publishers. (Chapter-4: Art.-4.1 to 4.9.)
- 2. P. B. Bhattacharyya, S. K. Jain and S. R. Nagpaul, **Basic Abstract Algebra**, Cambridge University Press, Second Edition.
- 3. N. Jacobson, (2012) **Basic Algebra I**, Second Edition, Hindustan Publishing Corporation.
- 4. M. Nagata, (1997) **Field Theory**, Marcel-Dekker Inc.
- 5. I. S. Luthar, I. B. S. Passi, (2004) **Algebra**, Vol. 4, Field Theory, Narosa Publishing House
- 6. T. A. Hungerford, Algebra, Graduate Texts in Mathematics, Vol. 73, Springer Verlag.

Course Outcomes (COts):

CO No.	СО	Cognitive level
C303.1	Understand extensions on fields, Eisenstein criterion, reducible and	2
	irreducible polynomials, algebraically closed field.	<u> </u>
C303.2	understanding fundamentals of Normal extensions, Separable and	2
	Inseparable extensions.	2
C303.3	understand the applicability of Galois theory and Roots of Unity, Solve	
	the problems on solvability by radicals, basic knowledge of	2
	Transcendental extensions	

	MT - 304: Fluid Dynamics	Lecture
	Course Objectives:	
	 Create a base to understand the motion of fluid. 	
	 Develop various techniques to solve the problems of fluid flow. 	
	Benefit at advanced studies in the various fields of fluid motion.	
Unit 1	Kinematics: Introduction to some identities, formulae & theorems in	
	vector calculus, Properties of fluids, Types of fluids, Types of flows,	
	Eulerian & Lagrangian Methods, Real fluids & Ideal fluids, Velocity of a	
	fluid at a point, Streamlines & Pathlines, The velocity potential, Velocity	12L
	vector, Local and Particle Rates of Change, The equation of Continuity,	
	Acceleration of fluid, Conditions at a rigid Boundary, General Analysis of	
	Fluid Motion.	
Unit 2	Equation of Motion: Pressure at a point in a fluid at rest, Pressure at a	
	point in a moving fluid, Conditions at a boundary of two Inviscid	
	Immiscible fluids, Euler's equation of motion, Bernoulli's equation,	
	Discussion of the case of steady motion under conservative body forces,	12 L
	some potential theorems, some flows involving axial symmetry, Some	
	special two-dimensional flows, Impulsive motion, Some further aspects	
	of vertex motion.	
Unit 3	Three Dimensional Flows: Introduction, Sources, Sinks, Doublets, Images	
	in a Rigid infinite plane, Images in Solid spheres, Axi-symmetric flows,	12 L
	Stokes's Stream function, Some special forms of the stream function for	
	Axi-symmetric irrotational motions.	
Unit 4	Two Dimensional Flows: Meaning of two-dimensional flow, Use of	
	cylindrical polar coordinates, Stream function, Complex potential for two	
	dimensional irrotational incompressible flow, Complex velocity	40.7
	potentials for standard Two-dimensional flows-uniform stream, line	12 L
	sources & line sinks, line doublets, line vortices, Two-dimensional image	
	systems, Milne-Thomson circle theorem-Applications, extension of circle	
The in F	theorem, Theorem of Blasius.	
Unit 5	Viscous Flow: Stress components in a Real fluid, Relations between	
	cartesian components of stress, Translation motion of fluid element, The	
	rate of strain quadric and principal stresses, Some properties of the rate	121
	of strain quadric, Stress analysis in fluid motion, Relations between	12 L
	stress and rate of strain, Coefficient of viscosity& Laminar flow, The	
	Navier-Stokes equation of motion of a viscous fluid, Some solvable	
	problems in viscous flow, Steady viscous flow.	<u> </u>

Suggested readings:

- 1. F. Chorlton, Textbook of Fluid Dynamics, CBS Publisher. Ch (1): 1.1-1.20; Ch (2): 2.1-2.11; Ch (3): 3.1-3.12; Ch (4): 4.1-4.5; Ch (5): 5.1-5.9; Ch (8): 8.1-8.11.
- 2. G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press.
- 3. R. W. Fox, A. T. McDonald, P. J. Pritchard, Introduction to Fluid Mechanics, Sixth Edition, John Wiley & Sons.

Course Outcomes (COts):

СО	со	Cognitive
No.		level
C304.1	understand the concept of fluid & their types, lines to study of fluid	2
	flow.	2
C304.2	understand the equation of motion of fluid.	2
C304.3	understand the information regarding three-dimensional flows.	2
C304.4	understand the concept of two-dimensional flows.	2
C304.5	understand various models in viscous flows.	2

M.Sc. Part II Semester III (Mathematics): Elective Course (Select only one)

	MT 305-Statistical Techniques	Lecture
	Course Objectives:	
	To aware student about statistical concepts like mean, mode, median,	
	regression, correlation,	
	To aware students about application of statistical techniques,	
	sampling and distributions.	
	• Students are expected to learn mathematical methods for Statistics,	
	Mathematical Statistics, core Statistical Methods as per the syllabi	
	provided by UGC or suggested by NET/SET.	
	Revision of Basic concepts: Discrete and Continuous series, Arithmetic	
	Mean, Geometric Mean, Harmonic Mean, Median and Mode.Range,	
IImit 1	Quartile deviation, Mean deviation, Standard deviation, Variance and	12 L
Unit 1	coefficient of variation, Probability: Sample space, discrete probability,	12 L
	Mathematical theory of probability, independent events, Addition and	
	Multiplication theorems of probability.	
	Conditional probability and Baye's theorem, Theoretical distributions:	
Unit 2	Random variable, probability distribution of a discrete and continuous	12 L
Unit 2	random variable. Probability density function, mathematical expectation.	12 L
	Binomial, Poisson and Normal distributions and their properties.	
	Correlation: Definition, meaning, scatter diagram method, Karl Pearson's	
	method, Probable error, Standard error and Rank correlation and	
Unit 3	concurrent deviations. Regression: Definition, meaning, two lines of	12 L
	regression, regression coefficients, standard error and relation between	
	correlation and regression.	
	Sampling and Large sample tests: Introduction to sampling, Simple	
	random sampling, stratified sampling and systematic sampling. Testing of	
Unit 4	hypothesis, level of significance, tests of significance for large samples.	12 L
	Tests for single proportion, difference of proportion, single mean,	
	difference of means, difference of S.D.	
	Exact sampling distributions: Chi-Square variate and Chi-Square	
	distribution, conditions of validity of Chi-Square test, applications of Chi-	
	square distribution, Chi –Square test for population variance, Chi-square	
	test for Goodness of fit and Independence of Attributes. Definition of	
Unit 5	student's 't' distribution and derivation, Fisher's 't' distribution constants	12 L
	of t-distribution, graph of t-distribution, application, test for single mean,	
	test for difference of means, paired t-test testing significance of observed	
	sample. Definition of F statistic, F-distribution, applications, F-test for	
Suggested r	equality of population variances	

Suggested readings:

- 1. E.J. Dudewicz and S.N. Mishra (1988), Modern Mathematical Statistics, John Willey & Sons.
- 2. Erwin Kreyszig (1970) Introductory Mathematical Statistics, Willey International Ltd.
- 3. J.K. Goyal and J.N. Sharma (2014) Mathematical Statistics, Krushna Prakashan.
- 4. S.C. Gupta and V.K. Kapoor (2001): Mathematical Statistics, Sultan Chand & Co-New Delhi.

Course Outcomes (COts):

CO No.	со	Cognitive
CO NO.		level
MT 305.1	Upon successful completion of this course :	
	1. Students will understand Basic concepts : Discrete and Continuous	
	series, Arithmetic Mean, Geometric Mean, Harmonic Mean, Median	
	and Mode. Range, Quartile deviation, Mean deviation, Standard	2
	deviation, Variance and coefficient of variation.	_
	4. Correlation: Definition, meaning, scatter diagram method, Karl	
	Pearson's method, Probable error, Standard error and Rank	
	correlation and concurrent deviations.	
MT 305.2	Solving examples based on Sample space, discrete probability,	
	Mathematical theory of probability, independent events, Addition	2
	and Multiplication theorems of probability, conditional probability	_
	and Baye's theorem.	
MT 305.3	Making applications Theoretical distributions: Random variable,	
	probability distribution of a discrete and continuous random	
	variable.Probability density function, mathematical	3
	expectation.Binomial, Poisson and Normal distributions and their	
	properties.	
MT 305.4	Analzing statistical data to study Correlation, scatter diagram	
	method, Karl Pearson's method, Probable error, Standard error and	4
	Rank correlation and concurrent deviations.	

M.Sc. Part II Semester III (Mathematics): Elective Course (Select only one)

	MT-306: Lattice Theory	Lectures
	Course Objectives:This course is mainly introduced for the students to understand	
	Lattice Theory and to some extents Boolean algebras.	
	• The syllabus of Lattice Theory discusses Modular lattice, Distribute Lattice, Boolean Lattices and Characterization theorem, Dedekind characterization, stone algebra.	
	The last units discuss standard and neutral elements, semi modular lattice and modular pairs.	
Unit I	Two Definitions of Lattices: Introduction to Posets, Duality principle, Semi-lattice, How to Describe Lattices: Join and Meet table, Covering, Some Algebraic Concepts: Homomorphism, sublattice, Lattice ideal, Congruence relations, Congruence lattice, The homomorphism theorem, Product of lattices, complete lattices, ideal lattice.	10 L
Unit-II	Polynomials. Identities and Inequalities, n-ry polynomial, lattice inequality, preservation of identities, Special Element: relatively complemented lattice, S(L), pseudocomplemented semillatice, join and meet irreducible elements.	14 L
Unit- III	Distributive lattice, Stone, Nachbin, Hashimato theorem, Congruence Relations, Distributive Lattices with Pseudocomplementation: S(L) and D(L) and properties.	12 L
Unit- IV	Distributive, Standard and Neutral Elements, Distributive, Standard and Neutral Ideals, Structure Theorems	12 L
Unit- V	Semimodular lattices, isomorphism theorem and Modular pairs.	12 L

Suggested Readings:

- George Gratzer, (1978) General Lattice Theory, Academic press, New York.
 (Chapter 1: Sections 1, 2, 3, 4, 6, Chapter 2: Sections 3, 6 Chapter 3: Section 2,3,4 Chapter 4: Section 2)
- Birkhoff G., (1968) Lattice Theory, Amer. Math. Soc., Colloq. Publ., New York, 1968
- Crawley P. and Dilworth R.P. (1973) **Algebraic theory of lattices**, Prentice-Hall, Englewood Cliffs, N.J.

Course Outcomes (COts):

CO	со	Cognitive
No.		level
C306.1	Understand Lattice and Lattice as an algebraic structures	2
C306.2	Explain Homomorphism between two Lattices, Boolean algebra	2
C306.3	understand neutral elements, structure theorem	2

	AC-301(A): Computer Skills	
	(Technology + Value added Audit course; Practical; 2 Credits)	
	(Optional: Campus + Program level)	
	Objectives (CObs):	
	nculcate different daily useful computer skills among students.	
Unit 1	Elements of Information Technology	
	1.1 Information Types: Text, Audio, Video, and Image, storage formats	
	1.2 Components: Operating System, Hardware and Software, firmware	2 L
	1.3 Devices: Computer, Mobile Phones, Tablet, Touch Screen, Scanner, Printer, Projector, Smart boards	Z L
	1.4 Processor & Memory: Processor functions, speed, Memory types: RAM	
	/ROM /HDD /DVD-ROM/Flash drives, memory measurement metrics	
Unit 2	Office Automation-Text Processing	
	2.1 Views: Normal View, Web Layout View, Print Layout View, Outline	
	View, ReadingLayout View	
	2.2 Working with Files: Create New Documents, Open Existing Documents, SaveDocuments to different formats, Rename Documents, Close	
	Documents	
	2.3 Working with Text: Type and Insert Text, Highlight Text, Formatting	
	Text, Delete Text, Spelling and Grammar, paragraphs, indentation,	
	margins	5 L
	2.4 Lists: Bulleted and Numbered Lists,	
	2.5 Tables: Insert Tables, Draw Tables, Nested Tables, Insert Rows and	
	Columns, Moveand Resize Tables, Moving the order of the column	
	and/or rows inside a table, TableProperties 2.6 Page Margins, Gutter Margins, Indentations, Columns, Graphics, Print	
	Documents,	
	2.7 Paragraph Formatting, Paragraph Attributes, Non-printing characters	
	2.8 Types of document files: RTF, PDF, DOCX etc.	
Unit 3	Office Automation-Worksheet Data Processing	
	3.1 Spreadsheet Basics: Adding and Renaming Worksheets, Modifying	
	Worksheets,	
	3.2 Moving Through Cells, Adding Rows, Columns, and Cells, Resizing Rows	~ T
	and Columns, Selecting Cells, Moving and Copying Cells	5 L
	3.3 Formulas and Functions: Formulas, Linking Worksheets, Basic	
	Functions, AutoSum, Sorting and Filtering: Basic Sorts, Complex Sorts, Auto-fill, Deleting Rows, Columns, and Cells	
	3.4 Charting: Chart Types, drawing charts, Ranges, formatting charts	
Unit 4	Office Automation- Presentation Techniques and slide shows	
	4.1 Create a new presentation, AutoContent Wizard, Design Template,	
	Blank Presentation, Open an Existing Presentation, PowerPoint screen,	
	Screen Layout	
	4.2 Working with slides: Insert a new slide, Notes, Slide layout, Apply a	
	design template, Reorder Slides, Hide Slides, Hide Slide text, Add	6 L
	content, resize a placeholder or textbox, Move a placeholder or text box,	
	Delete a placeholder or text box, Placeholder orText box properties, Bulleted and numbered lists, Adding notes	
	4.3 Work with text: Add text and edit options, Format text, Copy text	
	formatting, Replacefonts, Line spacing, Change case, Spelling check,	
L		<u> </u>

	Spelling options 4.4 Working with tables: Adding a table, Entering text, Deleting a table, Changing rowwidth, Adding a row/column, Deleting a row/column, Combining cells ,Splitting a cell,Adding color to cells, To align text vertically in cells, To change table borders,Graphics, Add clip art, Add an image from a file, Save & Print, slide shows, slideanimation/transitions.	
Unit 5	 Internet & Applications: 5.1 Computer Network Types: LAN, PAN, MAN, CAN, WAN, Defining and describing theInternet, Brief history, Browsing the Web, Hypertext and hyperlinks, browsers,Uniform resource locator 5.2 Internet Resources: Email, Parts of email, 5.3 Protecting the computer: Password protection, Viruses, Virus protection software,Updating the software, Scanning files, Net banking precautions. 5.4 Social Networking: Features, Social impact, emerging trends, issues, Social Networking sites: Facebook, Twitter, linkedin, orkut, online booking services 5.5 Online Resources: Wikipedia, Blog, Job portals, C.V. writing 5.6 e-learning: e-Books, e-Magazines, e-News papers, OCW(open course wares): Sakshat(NPTEL) portal, MIT courseware 	4 L
Unit 6	Cloud Computing Basics 6.1 Introduction to cloud computing 6.2 Cloud computing models: SAS, AAS, PAS 6.3 Examples of SAS, AAS, PAS (DropBox, Google Drive, Google Docs, Office 365 Prezi, etc.)	3 L

Suggested readings:

- 1. TCI, "Introduction to Computers and Application Software", Publisher: Jones & BartlettLearning, 2010, ISBN: 1449609821, 9781449609825
- 2. Laura Story, Dawna Walls, "Microsoft Office 2010 Fundamentals", Publisher: CengageLearning, 2010, ISBN: 0538472464, 9780538472463
- 3. June Jamrich Parsons, Dan Oja, "Computer Concepts Illustrated series", Edition 5, Publisher Course Technology, 2005, ISBN 0619273550, 9780619273552
- 4. Cloud computing online resources

Course Outcomes (COts):

CO No.	СО	Cognitive level
AC301A.1	Identify their lacunas about some computer skills and try to overcome the same.	2
AC301A.2	Practice the learned computer skills in real life and do their jobs more effectively.	3

AC-301(B): Cyber Security		
(Technology + Value added Audit course; Practical; 2 Credits)		
(Optional: Campus + Program level) Course Objectives (CObs):		
	nake students aware of different daily useful cyber security skills/rules.	
Unit 1	Networking Concepts Overview	3 h
ome 1	Basics of Communication Systems, Transmission Media, ISO/OSI and TCP/IP models, Network types: Local Area Networks, Wide Area Networks, Internetworking, Packet Formats, Wireless Networks: Wireless concepts, Advantages of Wireless, Wireless network architecture, Reasons to use wireless, Internet	311
Unit 2	Security Concepts	7 h
	Information Security Overview, Information Security Services, Types of Attacks, Goals for Security, E-commerce Security, Computer Forensics, Steganography. Importance of Physical Security, Biometric security & its types, Risk associated with improper physical access, Physical Security equipments.	
	Passwords: Define passwords, Types of passwords, Passwords Storage – Windows & Linux.	
Unit 3	Security Threats and vulnerabilities Overview of Security threats, Hacking Techniques, Password Cracking, Types of password attacks, Insecure Network connections, Wi-Fi attacks & countermeasures, Information Warfare and Surveillance. Cyber crime: e-mail related cyber crimes, Social network related cyber crimes, Desktop related cyber crimes, Social Engineering related cyber crimes, Network related cyber crimes, Cyber terrorism, Banking crimes	7 h
Unit 4	Cryptography Understanding cryptography, Goals of cryptography, Types of cryptography, Applications of Cryptography, Use of Hash function in cryptography, Digital signature in cryptography, Public Key infrastructure	5 h
Unit 5	System & Network Security System Security: Desktop Security, email security: PGP and SMIME, Web Security: web authentication, Security certificates, SSL and SET, Network Security: Overview of IDS, Intrusion Detection Systems and Intrusion Prevention Systems, Overview of Firewalls, Types of Firewalls, VPN Security, Security in Multimedia Networks, Fax Security.	3 h
Unit 6	OS Security	2 h
	OS Security Vulnerabilities updates and patches, OS integrity checks, Antivirus software, Design of secure OS and OS hardening, configuring the OS for security, Trusted OS.	
Unit 7	Security Laws and Standards Security laws genesis, International Scenario,	3 h
	Security Audit, IT Act 2000 and its amendments.	

Suggested readings:

- 1. Skills Factory, Certificate in Cyber Security, Text Book Special edition, Specially published for KBC NMU, Jalgaon
- 2. BPB Publication, "Fundamentals of Cyber Security", Mayank Bhushan, Rajkumar Singh Rathore, Aatif Jamshed
- 3. Create Space Independent Publishing Platform, "Cyber Security Basics", Don Franke, ISBN-13: 978-1522952190ISBN-10: 1522952195
- 4. Online references

Course Outcomes (COts):

CO No.	со	Cognitive level
AC301B.1	Practice learned cyber security skills/rules in real life.	3
AC301B.2	Provide guidance about cyber security skills/rules to their friends, parents and relatives.	2

AC-301(C): Typesetting with Latex

(Technology + Value added Audit course; Optional: Program-level; Practical; 2 Credits)

Course Objectives (CObs):

- Acquire proficiency in basic typesetting of Latex
- Demonstrate the use of Latex for Latter, Bio-data typing,
- Be familiar with Research paper, article and Book typing with cross referencing and bibliography.

Unit 1	The Basics: Simple typesetting, Fonts, Typesize, The Document, Document	
	class,	07 L
	Page style, Page numbering, Formatting lengths, Parts of a document,	U/L
	Dividing the document . Table of contents, Index and Glossary:	
Unit 2	Table of contents, Index, Glossary, Displayed Text, borrowed words,	
	Poetry in typesetting, making lists, Rows and Columns, Keeping tabs,	08 L
	Tables	
Unit 3	Typesetting Mathematics: The basics, Custom commands, More on	
	mathematics, Mathematics miscellany, New operators, The many faces	08 L
	of mathematics, Symbols. Typesetting Theorems: Theorems in L	OOL
	ATEX, Designer theorems, The amsthm package,	
Unit 4	Housekeeping. Several Kinds of Boxes: LR boxes, Paragraph	
	boxes, Paragraph boxes with specific height, Nested boxes, Rule boxes	
	Floats: The figure environment, The table environment. Cross References	07 L
	in LATEX. Pointing to a page—the package varioref, Pointing	U/L
	outside— the package, Footnotes, Margin pars, and Endnotes: Footnotes,	
	Marginal notes, Endnotes. Bibliography.	

Suggested readings:

1. E. Krishnan and G. S. Krishna, (2003), **Latex Tutorials** —**A Primer**, Indian TEX Users Group Floor III, SJP Buildings, Cotton Hills Trivandrum 695014, India.

Course Outcomes (COts):

CO No.	СО	Cognitive level
AC301C.1	Acquire skill of mathematical typing Using Latex	2
AC301C.2	Write communication letters, mathematical note, research articles using Latex typesetting	3
AC301C.3	Type Books, Research thesis with figure, cross referencing and Bibliography	5

AC-301(D): Project on Topics in Mathematics

(Technology + Value added Audit course; Optional: Program-level; Practical; 2 Credits)

Course Objectives (CObs):

- Develop skills to understand and analyze recent topics in Mathematics
- Make aware the students for research in Mathematics
- Make a project work on the knowledge acquired on the topic of interest

1	Choice of topics for project work	04 L
2	Collection of the materials such as books, references, website printouts	04 L
	etc	04 L
3	Analysis of the collected material in an uniform manner	10 L
4	Discussion and guidance from teacher or available expert of the field	04 L
5	Writing articles, research paper etc after finalization of the content	
6	Preparation of the content of the project	04 L
7	Typing and Binding of the project work	04 L

Suggested readings: (Sample projects/lists can be found on the following links)

- 1. https://eduprojecttopics.com/product-category/mathematics/
- 2. https://scholarworks.boisestate.edu/math_gradproj/
- 3. https://uniprojectmaterials.com/mathematics/project-topics-materials-for-final-year-students

 $5. https://www.monash.edu/_data/assets/pdf_file/0009/2085399/MTH3000_Projects.pdf\\ 6. https://www.uhd.edu/academics/sciences/mathematics-$

statistics/PublishingImages/Pages/ms-index/MathStatistics-SeniorProject.pdf

Course Outcomes (COts):

CO No.	со	Cognitive level
AC301D.1	Analyze material available at different sources	4
AC301D.2	Write articles/research notes/review on particular topic of interest	3
AC301D.3	develop research skills	3

	MT-401: Linear Integral Equations	Lecture
	Course Objectives: The aim of this course is	
	To provide adequate knowledge of fundamentals of Fredholm,	
	Volterra and singular integral equations	
	To understand different methods for finding the solutions of	
	Fredholm, Volterra and singular integral equations.	
	To motivate students, how to solve problems on differential and	
	integral equations using Laplace and Fourier transforms.	
Unit 1	Definition and classification of linear integral equations, Fredholm integral equation with separable kernel, Singular integral equations, Integro-differential equations, Homogeneous Fredholm equations and	12 L
** 1: 0	eigenfunctions.	
Unit 2	Solutions of Fredholm integral equations by: Successive approximations Method, Successive substitution Method, Adomian decomposition method, Modified decomposition method, Resolvent kernel of Fredholm equations and its properties.	12 L
Unit 3	Solutions of Volterra integral equations: Successive approximations	
	method, Neumann series, Successive substitution Method. Solution of Volterra integral equations by Adomian decomposition method, and the modified decomposition method, Resolvent kernel of Volterra equations and its properties, Convolution type kernels,	12 L
Unit 4	Applications of Laplace and Fourier transforms to solutions of Volterra	
	integral equations, Symmetric Kernels: Fundamental properties of eigenvalues and eigenfunctions for symmetric kernels, expansion in eigenfunctions and bilinear form. Hilbert Schmidt Theorem and its consequences, Solution of symmetric integral equations,	12 L
Unit 5	Operator method in the theory of integral equations, Solution of	
oiii 5	Volterra and Fredholm integrodifferential equations by Adomian decomposition method, Green's function: Definition, Construction of Green's function and its use in solving boundary value problems.	12 L
—		<u> </u>

Suggested readings:

- 1. R. P. Kanwal, (1971) Linear Integral Equation- Theory and Technique: Academic Press.
- 2. Abdul-Majid Wazwaz,(2011) Linear and Nonlinear Integral Equations-Methods and Applications: Springer.
- 3. L. G. Chambers, (1976) Integral Equations- A Short Course: International Text Book Company.
- 4. M. A, Krasnov, et.al. (1971) Problems and exercises in Integral equations: Mir Publishers.
- 5. J. A. Cochran, (1972) The Analysis of Linear Integral Equations: McGraw Hill Pub..
- 6. C. D. Green, (1969) Integral Equation Methods: Thomas Nelson and sons.

Course Outcomes (COts):

CO No.	СО	Cognitive level
C401.1	Know the relation between differential and integral equations, and how to change from one to another.	2
C401.2	Understand different kinds of kernels and use techniques for solving problems on each kind.	2
C401.3	Use Laplace transform, Fourier transform for solving a wide range of differential and integral equations.	3

	MT-402: Operations Research	Lecture
	Course Objectives:	
	to introduce the theory of PERT and CPM	
	to understand the Queuing Models and decision theory	
	to acquire knowledge of replacement and Inventory models model for	
	solving problems related to industry.	
Unit 1	PERT AND CPM: Introduction, Phases of project management, Network	
	diagrams, Fulkerson's rule, slack, forward pass, backward pass, critical	12 L
	path, project duration, various floats, tabular form, differences between	122
	PERT and CPM, Project cost and crashing the Network.	
Unit 2	Queuing Models: Introduction, application of Queuing models,	
	characteristics, arrival and service distribution, Kendall's notation for	
	Queuing models, Single channel queuing theory, M/M/I model and	12 L
	generalization, M/M/I:SIRO/model, M/M/1: FCFS/N/Finite queue length	12 L
	model, M/M/1:FCFS/n/N Limited source model, M/M/C:FCFS//	
	Multichannel queuing theory model.	
Unit 3	Decision theory: Steps involved in Decision theory, decision making under	
	uncertainty, Minimax, Maximin, Maximax, Hurwitz and Laplace criteria.	12 L
	Decision making under risk, Expected monetary value and Expected	12 L
	opportunity loss criteria and EVPI, Decision trees.	
Unit 4	Replacement Models: Introduction, Replacement of Items that deteriorate	
	with time with no changes in money value, with change in value of money,	12 L
	replacement of items that fail suddenly, individual replacement policy,	12 L
	group replacement policy and staffing problems.	
Unit 5	Inventory Models: Necessity and maintenance of Inventory, inventory	
	costs, inventory control problems, inventory models with deterministic	
	demand, with probabilistic demand, with price breaks, multi-item	12 L
	deterministic models, forecasting of demand, forecasting methods,	
	seasonal demand, when to order, safety stock and how much to order.	
		l .

Suggested readings:

- 1. V. K. Kapur: Quantitative Techniques for Management, Sultan Chand & Co. New Delhi.
- 2. P. K. Gupta and D.S. Hira: Operations Research, Sultan Chand & Co., New Delhi.
- 3. Taha, Operations Research: An introduction, Macmillan publishing Co.
- 4. Vohra N D, Quantitative techniques in management, Tata Mc-Graw Hill.

Course Outcomes (COts):

CO No.	СО	Cognitive level
C402.1	analyze the results and propose solutions to the decision-making processes in Management and Engineering.	4
C402.2	describe mathematical tools needed to evaluate decision problems	3
C402.3	develop technical knowledge for replacement and inventory models to solve problem arises in allied fields.	4

	MT - 403: Commutative Algebra	Lecture
	Course Objectives:	
	• To know concept of sequence of modules and R-module	
	homomorphisms, Tensor products.	
	To study ring extensions.	
	 To know the concepts of integral extensions and valuation domain. 	
Unit 1	Projective Modules: Exact sequences, Projective modules, Finitely generated	
	modules, Shanuel's lemma, Tensor product, Tensor product w. r. t. exact	15 L
	sequences, flat modules, Faithfully flat modules.	
Unit 2	Localisation: Jacobson radical, Nakayama lemma, multiplicatively closed set,	
	Localisation, Localisation and exact sequence, localisation and tensor	10 L
	product.	
Unit 3	Ideal and Chain conditions in modules: Extension and Contraction of ideals,	10 L
	Artinian modules, Structure theorem of Artinian rings.	10 L
Unit 4	Integral extensions: Integral elements, Integral closure, Integral extensions,	
	Going up theorem, Integrally closed domain, Going down theorem	15 L
IInit F	Valuation wings, Valuation wings Ordered group valuation and Cald Discrete	
Unit 5	Valuation rings: Valuation rings, Ordered group, valuation on a field, Discrete	10 L
	valuation rings, Dedekind domain.	

Suggested readings:

- 1. Gopalakrishnan N. S. (2016), **Commutative Algebra**, Universities Press (India) Pvt. Ltd. (Chapter- I: Art.-1.2 to 1.4, Chapter-II: Art.- 2.2 to 2.3, Chapter-III: Art.- 3.1 to 3.3, Chapter-IV: Art.-4.1 to 4.3, Chapter-V: Art- 5.1 to 5.3).
- 2. Atiyah M. F. and Donald Mac (2007), **Introduction to Commutative Algebra**, Sarat Book House.
- 3. Eisenbud David (1995), **Commutative Algebra with a view toward Algebraic Geometry**, Springer Verlag, New York.
- 4. Jacobson N. (1980), **Basic Algebra Vol.-I & II**, Hindustan Publishing Corporation (India).
- 5. Zarski O. and Samuel P. (1975), **Commutative Algebra**, Springer.
- 6. Rowen L. (1988), **Ring theory Vol.-I & II**, Academic Press.

Course Outcomes (COts):

CO No.	СО	Cognitive level
C403.1	Understand the concept of exact sequences, projective and flat modules.	2
C403.2	Explain the concepts of Artinian module and Artinian rings.	2
C403.3	Learn the Valuation rings and Discrete valuation rings.	2

	MT - 404: Advanced Abstract Algebra	Lecture
	Course Objectives:	
	• To introduce nil radical of an ideal of a ring and semiprime ideal.	
	 to introduce Jacobson radical and prime radical of a ring. 	
	• To introduce the direct sum of rings and study more results on	
	Noetherian rings.	
Unit 1	Basic concepts of maximal ideals, prime ideals and nil radical .of an	12 L
	ideal, semiprime ideal and primary ideals.	12 L
Unit 2	Minimal prime ideals, Prime avoidance theorem, Jacobson radical of a	12 L
	ring, semisimple ring and prime radical of a ring.	12 L
Unit 3	Quasi-regular element, J-radical, J-semisimple ring, regular ring.	12 L
Unit 4	Direct sum of rings, subdirectly reducible and irreducible rings.	12 L
Unit 5	Noetherian ring, irreducible ideals, irrdundant primary representation,	12 L
	Cohen's theorem and Krull intersection theorem.	14 L

Suggested readings:

- 1. D. M. Burton, (1970) **A first course in ring and ideals**, Addison-Wisley Publishing Company Inc.
 - Chapter-V: Art.-5.1 to 5.16, Chapter-VIII: Art.-8.1 to 8.21, Chapter-IX: Art.-9.4 to 9.6, Chapter-X: Art-10.1 to 10.6, Chapter-XII: Art.-12.1 to 12.11.
- 2. N. Jacobson, (1980) Basic Algebra Vol- I & II, Hindustan Publishing Corporation, India.

Course Outcomes (COts):

CO No.	со	Cognitive level
C404.1	Know the different types of ideals and their importance	2
C404.2	Know Jacobson radical and prime radical of a ring with the relative concepts	2
C404.3	Know the direct sum of rings and some advanced results on Noetherian rings	2

	MT 405 Algebraic Topology	Lecture
	• To know the concept of Geometric complexes and simplicial homology.	
	• To study simplicial approximations.	
	• To know the homotopic paths and fundamental group.	
Unit 1	Geometric complexes, polyhedron, orientation of Geometric complexes.	10 L
Unit 2	Chains, Cycles, Boundaries, Homology groups, Examples and structure	15 L
	of homology groups, The Euler-Poincare theorem, Euler's theorem,	
	Pseudo manifolds, Fundamental group of $S_{\rm n}$.	
Unit 3	Simplicial approximation, Induced homomorphism on the homology	15 L
	groups, The Brouwer's fixed point theorem.	
Unit 4	Homotopic paths and Fundamental groups, Covering homotopy	10 L
	property for S_1 , Examples of Fundamental groups	
Unit 5	Relation between first homology group and fundamental group.	10 L

Suggested readings:

- 1. F.H. Croom, (1978) **Basic Concepts of Algebraic Topology**, Springer under graduate text. (Chapter-I: Art- 1.1 to 1.4, Chapter-II: Art-2.1 to 2.5, Chapter-III: Art-3.1 to 3.4, and Chapter-IV: Art-4.1 to 4.4.)
- 2. Satya Deo, (2003) Algebraic Topology-A primer, Hindustan Book Agency,.
- 3. B. K. Lahiri, (2005) **A First Course in Algebraic Topology**, Second Edition, Alpha Science Intl Ltd.
- 4. E. H. Spanier, (1994) Algebraic Topology, Third Edition, Springer Verlag New York Inc.
- 5. I .M. Singer & J.A. Thorpe, (1976) Lecture Notes on Elementary Topology and Differential Geometry, Springer Verlag New York.

Course Outcomes (COts):

CO No.	СО	Cognitive level
C405.1	Understand the fundamental concepts and methods in algebraic topology.	2
C405.1	Explain the well known theorems: The Euler-Poincare theorem, Euler's theorem, Brouwer's fixed point theorem.	2
C405.1	Learn the relation between first homology group and fundamental group.	2

	MT - 406: Theory of Special Functions	Lecture
	Course Objectives:	
	1. To analyze properties of special functions by their integral	
	representations and symmetries.	
	2. To determine properties of Legendre polynomials, Rodrigue's	
	formula, Generating function and Fourier Legendre's serieswhich	
	may be solved by application of special functions.	
	3. To determine properties of solution of Bessel's differential equation	
	and Bessel's functions, Bessel's function of first kind and second kind,	
	Orthogonality of Bessel's functions, The Hypergeometric Functions.	
	4. Study of Hypergeometric series, Euler's Integral Representation, the	
	Hypergeometric equation, the Barnes Integral for the Hypergeometric	
	function	
Unit I	The Gamma & Beta Functions: The Gamma and Beta integrals, Functions	
	and their properties, The Euler Reflection formula, Riemann Zeta	12 L
	functions, Gauss's multiplication formula for $\Gamma(mx)$, Integral	12 17
	representation for Log $\Gamma(mx)$, The Bohr-Mollerup theorem.	
Unit II	Legendre Polynomials: Solution of Legendre differential equation and	10 T
	Legendre polynomials, Rodrigue's formula, Generating function,	12 L
	Recurrence relations,	
Unit III	Orthogonal and orthonormal functions, Orthogonal property of	12 L
	Legendre's polynomials, Fourier Legendre's series.	
Unit IV	Bessel's Functions: Solution of Bessel's differential equation and Bessel's	
	functions, Bessel's function of first	12 L
	kind and second kind, Orthogonality of Bessel's functions, Fourier	
	Bessel's series.	
Unit V	The Hypergeometric Functions: The Hypergeometric series, Euler's	12 L
	Integral Representation, the Hypergeometric equation, the Barnes	12 L
	Integral for the Hypergeometric function.	

Suggested Readings:

- 1. George E. Andrews, Richard Askey, Ranjana Roy, (2010) **Special Functions**, Cambridge University Press. {Chapter 1; 1.1, 1.2, 1.3, 1.5, 1.6, 1.9, Chapter 2; 2.1,2.2, 2.3, 2.4}
- 2. R. K. Jain and S. R. K. Iyengar, (2008) **Advanced Engineering Mathematics**, Narosa Publishing House, New Delhi. {Chapter 7; 7.1, 7.2, Chapter 7; 7.4, 7.5,
- 3. Mark A. Pinsky, (1991) **Partial Differential Equations and Boundary Value Problem with Applications**, McGraw Hill, Ins. {Chapter 4; 4.2, Chapter 3; 3.2}
- 4. Earl D. Rainville, (1960) **Special Functions**, Chelsea Publishing Company, New York, (1960).
- 5. H. M. Srivastava, **A Treatise, On Generating Functions**, John Wiley & Sons, New York.

Course Outcomes (COts):

CO No.	СО	Cognitive level
C406.1	list the basic concept of integral calculus and special functions of various engineering problem and to know the application of some basic mathematical methods via all these special functions.	2
C406.2	Explain the applications and the usefulness of these special functions.	2
C406.3	Justify the use of gamma function, beta function special functions, Hypergeometric function and Hypergeometric series to: evaluate different types of integral calculus problems and solve differential equations	3

	MT - 406: Cryptography	Lecture
	 Course Objectives: to know how pure mathematics like Finite Fields and Number Theory are used to secure our daily online communication. Acquire knowledge of different cryptosystems and their mathematical settings 	
Unit 1	Introduction to Cryptography: Classifications of Cryptography along with few applications of Cryptography in day-to-day activities, Purpose of Cryptography, Basic Terminology, Applications of Modern Algebra and Number Theory in Cryptography Classical Ciphers: Some Simple Ciphers - Ceaser Cipher, Shift Cipher, Affine Cipher, Substitution Ciphers with examples, Transposition Ciphers with examples Cryptanalysis of Classical Ciphers: Cryptanalysis of Affine Ciphers, Cryptanalysis of Substitution Ciphers, Cryptanalysis of Vigenere Cipher and Cryptanalysis of the Hill Cipher Shannon's Theory, Perfect Secrecy, and the One-Time Pad: Perfect Secrecy, Entropy, Properties of Entropy, Spurious Keys and Unicity Distance	08 L
Unit 2	Mathematical Background for Cryptography: Algorithm to produce an irreducible polynomial of degree n over \mathcal{E} . Modular exponentiation by the repeated squaring, Primality Testing, Probabilistic Algorithms, The Pseudo-prime Test, The Miller-Rabin Test, The Agrawal-Kayal-Saxena (AKS) Algorithm, Primitive Roots,	08 L
Unit 3	Symmetric (Private) Key Ciphers: Block Ciphers: Feistel Structure — Balanced and Unbalanced, DES Cipher, Substitution-Permutation Network, AES Cipher, Applications of finite fields in designing AES S-box, Modes of Operation Pseudo- Random Bit Generator (PRBG): Random bit generators, Pseudo-random bit generators, Statistical tests, Cryptographically securepseudorandom bit generation Stream Ciphers: Feedback shift registers, Stream ciphers based on LFSRs, Salsa20/20 and ChaCha20 stream ciphers	14 L
Unit 4	Cryptographic Hash Functions: Definition and examples of hash functions, Definition of cryptographic hash functions, Properties of cryptographic hash functions, design principle of commonly used cryptographic hash functions SHA-1, SHA-2 Family: Detailed discussion of SHA-1 algorithm, Detailed	06 L

	discussion of SHA-256 algorithm. Brief description of SHA-224, SHA-384 and SHA-512 algorithms	
	SHA-3 and Applications: Brief description of SHA-3 competition, Keccak	
	Algorithm, SHA-3 standardization, Applications of cryptographic hash	
	functions	
Unit 5	Asymmetric (Public) Key Ciphers:	
	Introduction to Public Key Cryptography: Trapdoor one-way function,	
	Introduction to Non-secret encryption	
	Diffie-Hellman Key Exchange and RSA: Description of Diffie-Hellman	
	(DH) key exchange protocol, RSA cryptosystem with examples, Integer	
	factorization, Attack on RSA cryptosystem	
	ElGamal Cryptosystem: Discrete logarithm problem (DLP), ElGamal	12 L
	cryptosystem with examples, algorithm to solve DLP	12 L
	Elliptic Curve Cryptography: Elliptic Curves over the Reals, Elliptic	
	Curves Modulo a Prime, Elliptic Curves over Finite Fields, Properties of	
	Elliptic Curves, ElGamal Cryptosystems on Elliptic Curves.	
	Signature Schemes: RSA Signature Scheme, Security Requirements for	
	Signature Schemes, The ElGamal Signature Scheme and its variants,	
	Security of the ElGamal Signature Scheme	
	1	

Suggested readings:

- 1. Douglas R. Stinson and Maura B. Paterson, (2019) *Cryptography Theory and Practice*, CRC Press, Fourth Edition.
- 2. Hans Delfs and Helmut Knebl,(2015)*Introduction to Cryptography Principles and Applications*, Springer, Third Edition.
- 3. Chuck Easttom, (2016) *Modern Cryptography Applied Mathematics for Encryption for Encryption and Information Security*, McGraw-Hill Education, 2016
- 4. Jonathan Katz and Yehuda Lindell, (2021) *Introduction to Modern Cryptography*, CRC Press, Third Edition.

Course Outcomes (COts):

CO No.	СО	Cognitive level
C407.1	explain symmetric and Asymmetric cryptography	2
C407.2	see how Finite Fields and Number Theory are used to design modern cryptosystems for securing our online communication	3
C407.3	explain how digital signature is used in place of handwritten signature on a document	3

	AC-401(A): Human Rights (Professional and Social + Value Added Audit course; Practical; 2 Credits) (Optional:)			
	Course Objectives (CObs):			
	 To make students aware about human rights and human values. 			
Unit 1	Introduction to Human Rights	6 L		
	1.1 Concept of Human Rights			
	1.2 Nature and Scope of Human Rights			
	1.3 Fundamental Rights and Fundamental Duties			
	1.4 Interrelation of Rights and Duties			
Unit 2	Human Rights in India	8 L		
	2.1 Meaning and Significance of :			
	1) Right to Equality 2) Right to Freedom, 3) Right against Exploitation, 4)			
	Right to Freedom of Religion, 5) Cultural and Educational Rights, and 6)			
	Right to Constitutional Remedies.			
	2.2 Constitutional Provisions for Human Rights			
	2.3 Declaration of Human Rights			
	2.4: National Human Rights Commission			
Unit 3	Human Values	8 L		
	3.1: Meaning and Definitions of Values			
	3.2: Importance of values in the life of Individual			
	3.3: Types of Values			
	3.4: Programmes for conservation of Values			
Unit 4	Status of Social and Economically Disadvantaged people and their rights	8 L		
	4.1: Rights of women and children in the context of Social status			
	4.2: The Minorities and Human Rights			
	4.3: Status of SC/ST and other Indigenous People in the Indian Scenario			
	4.4: Human rights of economically disadvantaged Society			
Suggeste	gested readings:			

Suggested readings:

- 1. Human rights education YCMOU, Nasik
- 2. Value education SCERT, Pune
- 3. Human rights reference handbook Lucille whare

Course Outcomes (COts):

on completion of this course, the student will be usic to:		
CO No.	со	Cognitive level
AC401A.1	Practice the learned issues under human rights and human values in	3
	real life.	
AC401A.2	Provide social justices to people around them and provide guidance	5
	about human rights to their friends, parents and relatives.	

	AC-401(B): Current Affairs (Professional and Social + Value Added Audit course; Practical; 2 Credits) (Optional:)		
	 Course Objectives (CObs): To make students updated about current affairs of India and world. 		
	Title Content		Hours
Unit 1	Politics & Economy	National & International Political Activity, Organization.Economy & Business, Corporate world	08 L
Unit 2	Awards and recognitions	National & International Awards and recognitionsBooks and authors	07 L
Unit 3	Science & Technology	Software, Automobile, Space ResearchNew inventions and discoveries	07 L
Unit 4	Environment & Sports	 Summit & conference, Ecology & Climate, Organization. National & International Games, Olympics, commonwealth etc. 	08 L

Suggested readings (Use recent years' data and current literature):

- 1. India 2019, by Publications Division Government of India
- 2. Manorama Year Book by Philip Mathew,
- 3. India 2019, Rajiv Maharshi
- 4. Quick General Knowledge 2018 with Current Affairs Update, Disha Experts
- 5. General Knowledge 2018: Latest Who's Who & Current Affairs by RPH Editorial Board.

Course Outcomes (COts):

CO No.	СО	Cognitive level
AC401B.1	Identify important issues currently/recently happening in India or world.	5
AC401B.2	Summarize current affairs regularly.	6

AC-401(C): Review and Seminar of Research Papers in Mathematics

(Technology + Value added Audit course; Optional: Program-level; Practical; 2 Credits)

Course Objectives (CObs):

- Develop presentation skills for particular topic of interest among the students
- Students will acquire analytical thinking on the topic of interest

0 · · · · · · · · · · · · · · · · · · ·			
Unit 1	Algebra, Semiring Theory, Commutative Algebra, Linear Algebra, Field		
	Theory, Graph theory, Metric spaces, Fixed point theory, Topology, Lie		
	Algebra, Number Theory etc		
Unit 2	Analysis, Complex Analysis, Differential Equations, Numerical Analysis,		
	Functional Analysis, Integral Equations, Fractional Differential		
	Equations, Integral and Transform Theory etc		
Unit 3	t 3 Mechanics, Fluid Dynamics, Classical Mechanics, Computational Fluid		
	Mechanics, Fuzzy Mathematics, Coding theory, Cryptography etc		
Unit 4	At least 02 seminars by students on their review done in above topics etc		
Suggested readings:			

• Research papers, Articles, Books, Monographs, recommended websites etc

Course Outcomes (COts):

CO No.	СО	Cognitive level
AC401C.1	Prepare own notes for presentation	3
AC201C.2	Cultivate research skill	5
AC401C.3	Think analytically	3

AC-401(D): Vedic Mathematics

(Technology + Value added Audit course; Optional: Program-level; Practical; 2 Credits)

Course Objectives (CObs):

- To enhance computation skills among the students.
- Improve clarity on mathematical concepts.
- Develop analytical thinking through Vedic Mathematics.

Unit 1	Actual Applications of the Vedic Sutras, Arithmetical Computations,			
	Multiplication,			
	Practical Application (compound multiplication), Practice and Proportion,			
	Division by the Nikhilam method, Division by the Parevartpa method,			
	Argumental Division, Factorization (of simple quadratics), Factorization			
	(of harder quadratics), Factorization of Cubics etc., Highest Common			
	Factor.			
Unit 2	Simple Equations (First Principles), Simple Equations (by Sunyam etc.),			
	Merger Type of Easy Simple Equations, Extension method, Complex			
	Mergers, Simultaneous Simple Equations, Miscellaneous (Simple)			
	Equations, Quadratic Equations, Cubic Equations, Bi-quadratic			
	Equations, Multiple Simultaneous Equations, Simultaneous Quadratic			
	Equations.			
Unit 3	Factorization & Differential Calculus, Partial Fractions, Integration by			
	Partial			
	Fractions, The Vedic Numerical Code, Recurring Decimals, Straight			
	Division, Auxiliary Fractions, Divisibility & Simple Osculators,			
	Divisibility & Complex Multiplex Osculators, Sum & Difference of			
	Squares			
Unit 4	Elementary Squaring, Cubing etc. Straight Squaring, Vargamula (square			
	root), Cube Roots of Exact Cubes, Cube Roots (General), Pythagoras			
	Theorem etc., Apollonius' Theorem, Analytical Conics.			

Suggested readings:

1. Jagadguru Shankaracharya, Sri Bharati Krisna Tirtha Maharaja,(1981), **Vedic Mathematics**, (edited by Dr. V. S. Agrawala), Motilal Banaridas, Delhi.

Course Outcomes (COts):

On completion of this course, the student will be able to:

CO No.	СО	Cognitive level
AC401D.1	recognize their hidden potential, improve their mathematical abilities	4
AC401D.2	Enhance academic performance particularly in mathematical calculations	3
AC401D.3	know the effectiveness of the Vedic mathematics techniques	2

flauthan

Equivalence for M.Sc. (Mathematics) Courses

Old Syllabus (June 2017)		_	is (June 2021) CBCS pattern
(Semester pattern 60:40)		Course code	nester pattern 60:40)
Course code	Paper	Course code	Paper
Semester-1			_
MT 101	Advanced Real Analysis	MT 101	Advanced Real Analysis
MT 102	Topology	MT 102	Topology
MT 103	Abstract Algebra	MT 103	Abstract Algebra
MT 104	Ordinary and Partial Differential	MT 104	Partial Differential
	Equations		Equations
Any one of the	efollowing		
MT 105	Theory of Fuzzy sets	MT 105	Programming in C++
MT 106	Programming in C++	MT 105	Programming in C++
Semester II			
MT 201	General Measure Theory	MT 204	Classical Mechanics
MT 202	Complex Variables	MT 202	Complex Analysis
MT 203	Linear Algebra	MT 203	Linear Algebra
MT 204	Mathematical Methods	MT 205	Python Programming
Any one of the	following		
MT 205	Number Theory	MT 201	Number Theory
MT 206	Classical Mechanics	MT 204	Classical Mechanics

	d Syllabus (June 2018) emester pattern 60:40)	New Syllabus (June 2022) CBCS pattern (Semester pattern 60:40)			
Course code Paper		Course code	Paper		
Semester III		•			
MT 301	Topics in Functional Analysis	MT 301	Topics in Functional Analysis		
MT 302	Statistical Techniques	MT 305	Statistical Techniques		
MT 303	Topics in Field Theory	MT 303	Topics in Field Theory		
Any two of the	following	•			
MT 304	Fluid Dynamics	MT 304	Fluid Dynamics		
MT 305	Difference Equations	MT 304	Fluid Dynamics		
MT 306	Theory of Lattices	MT 306	Theory of Lattices		
MT 307	Elements of Graph Theory	MT 407	Cryptography		
Semester-IV					
MT 401	Advanced Mathematical Methods	MT 406	Theory of Special Functions		
MT 402	Operations Research	MT 402	Operations Research		
MT 403	Commutative Algebra	MT 403	Commutative Algebra		
Any two of the	Any two of the following				
MT 404	Advanced Abstract Algebra	MT 404	Advanced Abstract Algebra		
MT 405	Advanced Numerical Methods	MT 302	Numerical Analysis		
MT 406	Algebraic Topology	MT 405	Algebraic Topology		
MT 407	Linear Integral Equations	MT 401	Linear Integral Equations		

thandhan